调用此过程可完成判别分析。判别分析目前在医学中得以广泛应用,不仅在于它所建立的判别式可用于临床辅助诊断,而且判别分析可分析出各种因素对特定结果的作用力大小,故亦可用于病因学或疾病预后的推测。
10.3.2 实例操作
[例10.3]为研究舒张期血压和血浆胆固醇对冠心病的作用,某医师测定了50-59岁冠心病人15例和正常人16例的舒张压和胆固醇指标,结果如下,试作判别分析,建立判别函数以便在临床中用于筛选冠心病人。
编号 |
冠心病人组 |
编号 |
正常人组 | ||
舒张压kPa x1 |
胆固醇mmol/L x2 |
舒张压kPa
x1 |
胆固醇mmol/L
x2 | ||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
9.86 13.33 14.66 9.33 12.80 10.66 10.66 13.33 13.33 13.33 12.00 14.66 13.33 12.80 13.33 |
5.18 3.73 3.89 7.10 5.49 4.09 4.45 3.63 5.96 5.70 6.19 4.01 4.01 3.63 5.96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
10.66 12.53 13.33 9.33 10.66 10.66 9.33 10.66 10.66 10.66 10.40 9.33 10.66 10.66 11.20 9.33 |
2.07 4.45 3.06 3.94 4.45 4.92 3.68 2.77 3.21 5.02 3.94 4.92 2.69 2.43 3.42 3.63 |
10.3.2.1 数据准备
激活数据管理窗口,舒张压、胆固醇的变量名分别以x1、x2表示,将冠心病人资料和正常人资料合并,一同输入。而后,再定义一变量名为result,用于区分冠心病人资料和正常人资料,即冠心病人资料的result值均为1,正常人资料的result值均为2。
10.3.2.2 统计分析
激活Statistics菜单选Classify中的Discriminant...项,弹出Discriminant Analysis对话框(图10.5)。从对话框左侧的变量列表中选result,点击Ø钮使之进入Grouping Variable框,并点击Define Range...钮,在弹出的Discriminant Analysisefine Range对话框中,定义判别原始数据的类别区间,本例为两类,故在Minimum处输入1、在Maximum处输入2,点击Continue钮返回Discriminant Analysis对话框。再从对话框左侧的变量列表中选x1、x2,点击Ø钮使之进入Independents框,作为判别分析的基础数据变量。
图10.5 判别分析对话框
Wilks' lambda:按统计量Wilks λ最小值选择变量;
Unexplained variance:按所有组方差之和的最小值选择变量;
Mahalanobis' distance:按相邻两组的最大Mahalanobis距离选择变量;
Smallest F ratio:按组间最小F值比的最大值选择变量;
Rao's V:按统计量Rao V最大值选择变量。
本例由于变量数仅为2个,倾向让两个变量均进入方程,故选用Enter Independent together判别方式。 点击Statistics...钮,弹出Discriminant Analysis: Statistics对话框,在Descriptive栏中选Means项,要求对各组的各变量作均数与标准差的描述;在Function Coefficients栏中选Unstandardized项,要求显示判别方程的非标准化系数。之后,点击Continue钮返回Discriminant Analysis对话框。 点击Classify...钮,弹出Discriminant Analysis: Classification对话框,在Plot栏选Combined groups项,要求作合并的判别结果分布图;在Display栏选Results for each case项,要求对原始资料根据建立的判别方程作逐一回代重判别,同时选Summary table项,要求对这种回代判别结果进行总结评价。之后,点击Continue钮返回Discriminant Analysis对话框。
点击Save...钮,弹出Discriminant Analysis: Save New Variables对话框,选Predicted group membership项要求将回代判别的结果存入原始数据库中。点击Continue钮返回Discriminant Analysis对话框,之后再点击OK钮即完成分析。
10.3.2.3 结果解释
在结果输出窗口中将看到如下统计数据:
首先,系统提示将判别回代的结果以变量名DIS_1存于原始数据库中。
接着系统显示数据按变量RESULT分组,共31个样本作为判别基础数据进入分析,其中第一组15例,第二组16例。同时,分组给出各变量的均数(means)与标准差(standard deviations)。
Following variables will be created upon successful completion of the procedure: Name Label -------- ---------------------------------------- DIS_1 --- Predicted group for analysis 1
On groups defined by RESULT 31 (Unweighted) cases were processed. 0 of these were excluded from the analysis. 31 (Unweighted) cases will be used in the analysis.
Number of cases by group Number of cases RESULT Unweighted Weighted Label 1 15 15.0 2 16 16.0 Total 31 31.0
Group means RESULT X1 X2 1 12.49400 4.86800 2 10.62875 3.66250 Total 11.53129 4.24581
Group standard deviations RESULT X1 X2 1 1.64064 1.12948 2 1.09681 .92467 Total 1.65996 1.18231
On groups defined by RESULT Analysis number 1 Direct method: all variables passing the tolerance test are entered. Minimum tolerance level.................. .00100
Canonical Discriminant Functions Maximum number of functions.............. 1 Minimum cumulative percent of variance... 100.00 Maximum significance of Wilks' Lambda.... 1.0000
Prior probability for each group is .50000 |
下面为典型判别方程的方差分析结果,其特征值(Eigenvalue)即组间平方和与组内平方和之比为1.2392,典型相关系数(Canonical Corr)为0.7439,Wilks λ值为0.446597,经χ2检验,χ2为22.571,P<0.0001。 用户可通过判别方程的标准化系数,确定各变量对结果的作用大小。如本例舒张压(X1)的标准化系数(0.88431)大于胆固醇(X2)的标准化系数(0.82306),因而舒张压对冠心病的影响作用大于胆固醇。考察变量作用大小的另一途径是使用变量与函数间的相关系数,本例显示X1的变量与函数间的相关系数为0.62454,X2为0.54396,同样表明舒张压对冠心病的影响作用大于胆固醇。 根据系统显示的非标准化判别方程系数,得到判别方程为:
D = 0.6379195X1 + 0.8001452X2 - 10.7532968
依此方程,病人组的中心得分点为1.11198,正常人组的中心得分点为-1.04248。本例为二类判别,二类判别以0为分界点,若将某人的舒张压和胆固醇值代入判别方程,求出的判别分>0的为冠心病人,判别分<0的为正常人。
Canonical Discriminant Functions
Pct of Cum Canonical After Wilks' Fcn Eigenvalue Variance Pct Corr Fcn Lambda Chi-square df Sig : 0 .446597 22.571 2 .0000 1* 1.2392 100.00 100.00 .7439 :
* Marks the 1 canonical discriminant functions remaining in the analysis.
Standardized canonical discriminant function coefficients Func 1 X1 .88431 X2 .82306
Structure matrix: Pooled within-groups correlations between discriminating variables and canonical discriminant functions (Variables ordered by size of correlation within function) Func 1 X1 .62454 X2 .54396
Unstandardized canonical discriminant function coefficients Func 1 X1 .6379195 X2 .8001452 (Constant) -10.7532968
Canonical discriminant functions evaluated at group means (group centroids) Group Func 1 1 1.11198 2 -1.04248 |
下面为原始数据逐一回代的判别结果显示。其中病人组有3人被错判(编号为1、6、7,打**者),正常人组有3人被错判(编号为17、18、25,打**者)。接着用分布图的形式显示判别结果,图中1代表病人,2代表正常人,每四个1或2代表一个人;图中可见,有三个病人跨过0界进入负值区,被错判为正常人,也有三个正常人跨过0界进入正值区,被错判为病人。最后系统对回代判别的情况作评价,即病人组判别正确率为80.0%,正常人组为81.3%,总判别正确率为80.65%。
Case Mis Actual Highest Probability 2nd Highest Discrim Number Val Sel Group Group P(D/G) P(G/D) Group P(G/D) Scores 1 1 ** 2 .4692 .6817 1 .3183 -.3187 2 1 1 .7060 .8188 2 .1812 .7347 3 1 1 .5490 .9737 2 .0263 1.7112 4 1 1 .8162 .8606 2 .1394 .8795 5 1 1 .4884 .9784 2 .0216 1.8049 6 1 ** 2 .7174 .8236 1 .1764 -.6805 7 1 ** 2 .5157 .7151 1 .2849 -.3924 8 1 1 .6475 .7918 2 .2082 .6547 9 1 1 .1594 .9953 2 .0047 2.5190 10 1 1 .2305 .9926 2 .0074 2.3110 11 1 1 .4577 .9806 2 .0194 1.8546 12 1 1 .4869 .9785 2 .0215 1.8072 13 1 1 .8782 .8798 2 .1202 .9588 14 1 1 .4264 .6473 2 .3527 .3166 15 1 1 .1594 .9953 2 .0047 2.5190 16 2 2 .2097 .9935 1 .0065 -2.2968 17 2 ** 1 .7554 .8389 2 .1611 .8005 18 2 ** 1 .3611 .5874 2 .4126 .1986 19 2 2 .5442 .9741 1 .0259 -1.6489 20 2 2 .5157 .7151 1 .2849 -.3924 21 2 2 .3048 .5275 1 .4725 -.0164 22 2 2 .4154 .9833 1 .0167 -1.8570 23 2 2 .4876 .9785 1 .0215 -1.7367 24 2 2 .7323 .9551 1 .0449 -1.3846 25 2 ** 1 .2945 .5156 2 .4844 .0637 26 2 2 .9393 .8963 1 .1037 -.9664 27 2 2 .8590 .8741 1 .1259 -.8648 28 2 2 .4483 .9812 1 .0188 -1.8007 29 2 2 .3339 .9879 1 .0121 -2.0087 30 2 2 .8647 .8759 1 .1241 -.8721 31 2 2 .3928 .9847 1 .0153 -1.8970
Symbols used in plots Symbol Group Label ------ ----- -------------------- 1 1 2 2
All-groups Stacked Histogram
Classification results - No. of Predicted Group Membership Actual Group Cases 1 2 -------------------- ------ -------- -------- Group 1 15 12 3 80.0% 20.0% Group 2 16 3 13 18.8% 81.3% Percent of "grouped" cases correctly classified: 80.65%
Classification processing summary 31 (Unweighted) cases were processed. 0 cases were excluded for missing or out-of-range group codes. 0 cases had at least one missing discriminating variable. 31 (Unweighted) cases were used for printed output. 31 cases were written into the working file. |
系统将判别回代的结果以dis_1为变量名存入原始数据库中,如下图所示。用户可通过翻动原始数据库详细查阅。
图10.6 原始数据及判别结果
欢迎光临 FRM论坛 (http://frmspace.com/) | Powered by Discuz! 7.2 |