Board logo

标题: SPSS教程:K-MC分类分析 [打印本页]

作者: spss_SAS    时间: 2005-11-1 22:28     标题: SPSS教程:K-MC分类分析

人们认识事物时往往先把被认识的对象进行分类,以便寻找其中同与不同的特征,因而分类学是人们认识世界的基础科学。在医学实践中也经常需要做分类的工作,如根据病人的一系列症状、体征和生化检查的结果,判断病人所患疾病的类型;或对一系列检查方法及其结果,将之划分成某几种方法适合用于甲类病的检查,另几种方法适合用于乙类病的检查;等等。统计学中常用的分类统计方法主要是聚类分析与判别分析。

聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。判别分析则先根据已知类别的事物的性质,利用某种技术建立函数式,然后对未知类别的新事物进行判断以将之归入已知的类别中。聚类分析与判别分析有很大的不同,聚类分析事先并不知道对象类别的面貌,甚至连共有几个类别也不确定;判别分析事先已知对象的类别和类别数,它正是从这样的情形下总结出分类方法,用于对新对象的分类。

第一节 K-Means Cluster过程

10.1.1 主要功能

调用此过程可完成由用户指定类别数的大样本资料的逐步聚类分析。所谓逐步聚类分析就是先把被聚对象进行初始分类,然后逐步调整,得到最终分类。

10.1.2 实例操作

[例10.1]为研究儿童生长发育的分期,调查1253名1月至7岁儿童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm)资料。资料作如下整理:先把1月至7岁划成19个月份段,分月份算出各指标的平均值,将第1月的各指标平均值与出生时的各指标平均值比较,求出月平均增长率(%),然后第2月起的各月份指标平均值均与前一月比较,亦求出月平均增长率(%),结果见下表。欲将儿童生长发育分为四期,故指定聚类的类别数为4,请通过聚类分析确定四个儿童生长发育期的起止区间。


月份

月平均增长率(%)

身高

体重

胸围

坐高

1

2

3

4

6

8

10

12

15

18

24

30

36

42

48

54

60

66

72

11.03

5.47

3.58

2.01

2.13

2.06

1.63

1.17

1.03

0.69

0.77

0.59

0.65

0.51

0.73

0.53

0.36

0.52

0.34

50.30

19.30

9.85

4.17

5.65

1.74

2.04

1.60

2.34

1.33

1.41

1.25

1.19

0.93

1.13

0.82

0.52

1.03

0.49

11.81

5.20

3.14

1.47

1.04

0.17

1.04

0.89

0.53

0.48

0.52

0.30

0.49

0.16

0.35

0.16

0.19

0.30

0.18

11.27

7.18

2.11

1.58

2.11

1.57

1.46

0.76

0.89

0.58

0.42

0.14

0.38

0.25

0.55

0.34

0.21

0.55

0.16

10.1.2.1 数据准备

激活数据管理窗口,定义变量名:虽然月份分组不作分析变量,但为了更直观地了解聚类结果,也将之输入数据库,其变量名为month;身高、体重、胸围和坐高的变量名分别为x1、x2、x3和x4,输入原始数额。

10.1.2.2 统计分析

激活Statistics菜单选Classify中的K-Means Cluster...项,弹出K-Means Cluster Analysis对话框(如图10.1示)。从对话框左侧的变量列表中选x1、x2、x3、x4,点击Ø钮使之进入Variables框;在Number of Clusters(即聚类分析的类别数)处输入需要聚合的组数,本例为4;在聚类方法上有两种:Iterate and classify指先定初始类别中心点,而后按K-means算法作叠代分类,Classify only指仅按初始类别中心点分类,本例选用前一方法。

图10.1 逐步聚类分析对话框

为在原始数据库中逐一显示分类结果,点击Save...钮弹出K-Means Cluster:Save New Variables对话框,选择Cluster membership项,点击Continue钮返回K-Means Cluster Analysis对话框。

本例还要求对聚类结果进行方差分析,故点击Options...钮弹出K-Means Cluster:来Options对话框,在Statistics栏中选择ANOVA table项,点击Continue钮返回K-Means Cluster Analysis对话框,再点击OK钮即完成分析。

10.1.2.3 结果解释

在结果输出窗口中将看到如下统计数据:

首先系统根据用户的指定,按4类聚合确定初始聚类的各变量中心点,未经K-means算法叠代,其类别间距离并非最优;经叠代运算后类别间各变量中心值得到修正。

Initial Cluster Centers.

Cluster X1 X2 X3 X4

1 11.0300 50.3000 11.8100 11.2700

2 5.4700 19.3000 5.2000 7.1800

3 3.5800 9.8500 3.1400 2.1100

4 .3400 .4900 .1800 .1600

Convergence achieved due to no or small distance change.

The maximum distance by which any center has changed is .0000

Current iteration is 2

Minimum distance between initial centers is 10.5200

Iteration Change in Cluster Centers

1 2 3 4

1 .0000 .0000 2.46E+00 1.27E+00

2 .0000 .0000 .0000 .0000

Case listing of Cluster membership.

Case ID Cluster Distance

1 1 .000

2 2 .000

3 3 2.457

4 4 3.219

5 3 2.457

6 4 1.530

7 4 1.346

8 4 .515

9 4 .915

10 4 .266

11 4 .281

12 4 .668

13 4 .467

14 4 .844

15 4 .415

16 4 .873

17 4 1.215

18 4 .619

19 4 1.269

Final Cluster Centers.

Cluster X1 X2 X3 X4

1 11.0300 50.3000 11.8100 11.2700

2 5.4700 19.3000 5.2000 7.1800

3 2.8550 7.7500 2.0900 2.1100

4 .9060 1.4660 .4820 .6560

之后对聚类结果的类别间距离进行方差分析,方差分析表明,类别间距离差异的概率值均<0.001,即聚类效果好。这样,原有19类(即原有的19个月份分组)聚合成4类,第一类含原有1类,第二类含原有1类,第三类含原有2类,第四类含原有15类。具体结果系统以变量名QCL_1存于原始数据库中。

Distances between Final Cluster Centers.

Cluster 1 2 3 4

1 .0000

2 32.4397 .0000

3 45.3400 13.2521 .0000

4 52.2325 20.0924 6.9273 .0000

Analysis of Variance.

Variable Cluster MS DF Error MS DF F Prob

X1 37.5806 3 .369 15.0 101.7853 .000

X2 817.1164 3 1.354 15.0 603.2588 .000

X3 45.4089 3 .281 15.0 161.1145 .000

X4 46.0994 3 .235 15.0 195.4933 .000

Number of Cases in each Cluster.

Cluster unweighted cases weighted cases

1 1.0 1.0

2 1.0 1.0

3 2.0 2.0

4 15.0 15.0

Missing 0

Valid cases 19.0 19.0

Variable Saved into Working File.

QCL_1 (Cluster Number)

在原始数据库(图10.2)中,我们可清楚地看到聚类结果;参照专业知识,将儿童生长发育分期定为:

第一期,出生后至满月,增长率最高;

第二期,第2个月起至第3个月,增长率次之;

第三期,第3个月起至第8个月,增长率减缓;

第四期,第8个月后,增长率显著减缓。

图10.2 逐步聚类分析的分类结果






欢迎光临 FRM论坛 (http://frmspace.com/) Powered by Discuz! 7.2