Board logo

标题: 主成分分析在SPSS中的操作应用(上) [打印本页]

作者: dreame    时间: 2005-12-2 17:34     标题: 主成分分析在SPSS中的操作应用(上)

一、引言

  主成分分析和因子分析在社会经济统计综合评价中是两个常被使用的统计分析方法。现在SPSS、SAS等统计软件使用越来越普遍,但SPSS并未像SAS一样,将主成分分析与因子分析作为两个独立的方法并列处理[注:主成分分析与因子分析二者是又有着区别与联系,最主要的不同在于它们的数学模型的构建上,具体区别请见参考文献2],而是根据二者之间的关系有机地将主成分分析嵌入到因子分析之中,这样虽然简化了分析程序,却为主成分分析的计算带来不便。且国内许多SPSS教程并没有详细讲解如果应用SPSS进行主成分分析,如何使用SPSS对主成分分析进行计算呢?为使读者能够正确使用SPSS软件进行主成分分析,本文将通过一个实例来详细介绍如何用SPSS做主成分分析。接下来先简单介绍主成分分析原理与模型,以便读者对主成分分析有个大致的了解。

二、主成分分析原理和模型[1]

(一)主分成分析原理

  主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

(二)主成分分析数学模型


F2=a12ZX1+a22ZX2……+ap2ZXp

……

  Fp=a1mZX1+a2mZX2+……+apmZXp

  其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵Σ的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。

A=(aij)p×m=(a1,a2,…am,),Raiiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。

进行主成分分析主要步骤如下:
1. 指标数据标准化(SPSS软件自动执行);
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名;

主成分与综合主成分(评价)值。

三、对沿海10个省市经济综合指标进行主成分分析

(一)指标选取原则

  本文所选取的数据来自《中国统计年鉴2003》中2002年的统计数据,在沿海10省市经济状况主要指标体系中选取了10个指标:
X1——GDP X2——人均GDP
X3——农业增加值 X4——工业增加值
X5——第三产业增加值 X6——固定资产投资
X7——基本建设投资 X8——国内生产总值占全国比重(%)
X9——海关出口总额 X10——地方财政收入

图表 1 沿海10个省市经济数据

地区

GDP

人均GDP

农业增加值

工业增加值

第三产业增加值

固定资产投资

基本建设投资

社会消费品零售总额

海关出口总额

地方财政收入

辽宁

5458.2

13000

14883.3

1376.2

2258.4

1315.9

529

2258.4

123.7

399.7

山东

10550

11643

1390

3502.5

3851

2288.7

1070.7

3181.9

211.1

610.2

河北

6076.6

9047

950.2

1406.7

2092.6

1161.6

597.1

1968.3

45.9

302.3

天津

2022.6

22068

83.9

822.8

960

703.7

361.9

941.4

115.7

171.8

江苏

10636

14397

1122.6

3536.3

3967.2

2320

1141.3

3215.8

384.7

643.7

上海

5408.8

40627

86.2

2196.2

2755.8

1970.2

779.3

2035.2

320.5

709

浙江

7670

16570

680

2356.5

3065

2296.6

1180.6

2877.5

294.2

566.9

福建

4682

13510

663

1047.1

1859

964.5

397.9

1663.3

173.7

272.9

广东

11770

15030

1023.9

4224.6

4793.6

3022.9

1275.5

5013.6

1843.7

1202

广西

2437.2

5062

591.4

367

995.7

542.2

352.7

1025.5

15.1

186.7

(二)主成分分析在SPSS中的具体操作步骤

  运用SPSS统计分析软件Factor过程[2]对沿海10个省市经济综合指标进行主成分分析。具体操作步骤如下:
1. AnalyzeàData ReductionàFactor Analysis,弹出Factor Analysis对话框
2. 把X1~X10选入Variables框
3. Descriptives: Correlation Matrix框组中选中Coefficients,然后点击Continue,返回Factor Analysis对话框
4. 点击“OK”

图表 2 Factor Analyze对话框与Descriptives子对话框

  SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。

图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表






欢迎光临 FRM论坛 (http://frmspace.com/) Powered by Discuz! 7.2